Dynamique

S. f. (Ordre encyclopédique, Entendement, Raison, Philosophie ou Science, Science de la nature, Mathématiques, Mathématiques mixtes, Mécanique, Dynamique, Dynamique proprement dite, Balistique) c'est la science du mouvement des corps pesans jetés en l'air suivant une direction quelconque. Ce mot vient du grec, jacio ; je jete.

On trouvera à l'article PROJECTILE les lois de la Balistique. La théorie du jet des bombes est une partie considérable de cette science, et c'est principalement cette théorie qu'on y traite. Nous avons là-dessus plusieurs ouvrages, l'art de jeter les bombes de M. Blondel, de l'académie des Sciences, un des premiers qui aient paru sur cette matière ; le Bombardier français par M. Belidor, etc. Mais personne n'a traité cette science d'une manière plus élegante et plus courte que M. de Maupertuis, dans un excellent mémoire imprimé parmi ceux de l'académie des Sciences de Paris de 1732 ; ce mémoire est intitulé Balistique arithmétique, et on peut dire qu'il contient en deux pages plus de choses que les plus gros traités que nous ayons sur cette matière. M. de Maupertuis cherche d'abord l'équation analytique de la courbe A M B (fig. 47. Méch.), que décrit un projectile A jeté suivant une direction quelconque A R ; il trouve l'équation de cette courbe entre les deux coordonnées A T, x, et T M, y, et il n'a pas de peine à faire voir que cette équation est celle d'un parabole. En faisant y = 0, dans cette équation, la valeur correspondante de x lui donne la partie A B du jet ; pour avoir le cas où la portée A B du jet est la plus grande qu'il est possible, il prend la différence de la valeur de A B, en ne faisant varier que la tangente de l'angle de projection RAB ; et il fait ensuite cette différence = 0, suivant la règle de maximis et minimis, ce qui lui donne la valeur de la tangente de l'angle de projection, pour que A B soit la plus grande qu'il est possible, et il trouve que cette tangente doit être égale au rayon, c'est-à-dire que l'angle B A R doit être de 45 degrés. Pour avoir la hauteur t m du jet, il n'y a qu'à faire la différence de y = 0, parce que t m est la plus grande de toutes les ordonnées. Pour frapper un point donné n avec une charge donnée de poudre, il substitue dans l'équation de la parabole, à la place de x, la donnée A I, et à la place de y, la donnée In, et il a une équation dans laquelle il n'y a d'inconnue que la tangente de l'angle de projection R A B, qu'il détermine par cette équation, etc. et ainsi des autres.